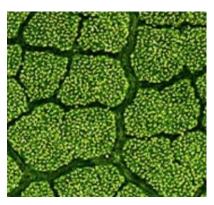


Come lavorano e cosa producono nella pianta gli induttori di resistenza

Rita Milvia De Miccolis Angelini, Caterina Rotolo, Donato Gerin, Crescenza


Dongiovanni, Stefania Pollastro, Francesco Faretra

Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, sezione di Patologia Vegetale

Università degli Studi di Bari ALDO MORO

- ✓ Le piante sono fondamentali per la vita sulla Terra
- ✓ Sino al 40% di perdite nella produzione sono causate ogni anno da patogeni e parassiti
- ✓ I cambiamenti climatici e le attività umane hanno alterato gli ecosistemi, riducendo la biodiversità e creando condizioni favorevoli ai patogeni
- ✓ La globalizzazione con la movimentazione di merci e persone porta ad una rapida diffusione di patogeni nel mondo
- ✓ Rischio di emergenze fitosanitarie
- ✓ Protezione integrata delle colture (Integrated Pest Management, IPM) che combina differenti strumenti e strategie di gestione delle malattie per assicurare sanità per le piante minimizzando i rischi associati

PARLAMENTO EUROPEO DIRETTIVA 2009/128/CE

USO SOSTENIBILE DEGLI AGROFARMACI

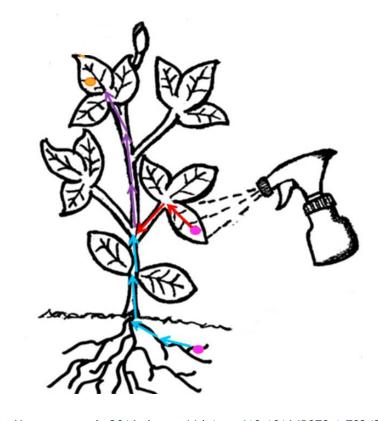
- RIDUZIONE DEL RISCHIO: SALUTE E AMBIENTE - PROTEZIONE INTEGRATA (IPM)

STRATEGIA EUROPEA
'FARM TO FORK'
GREEN DEAL

Transizione verso un sistema alimentare dell'UE più sano e sostenibile

Far fronte ai cambiamenti climatici

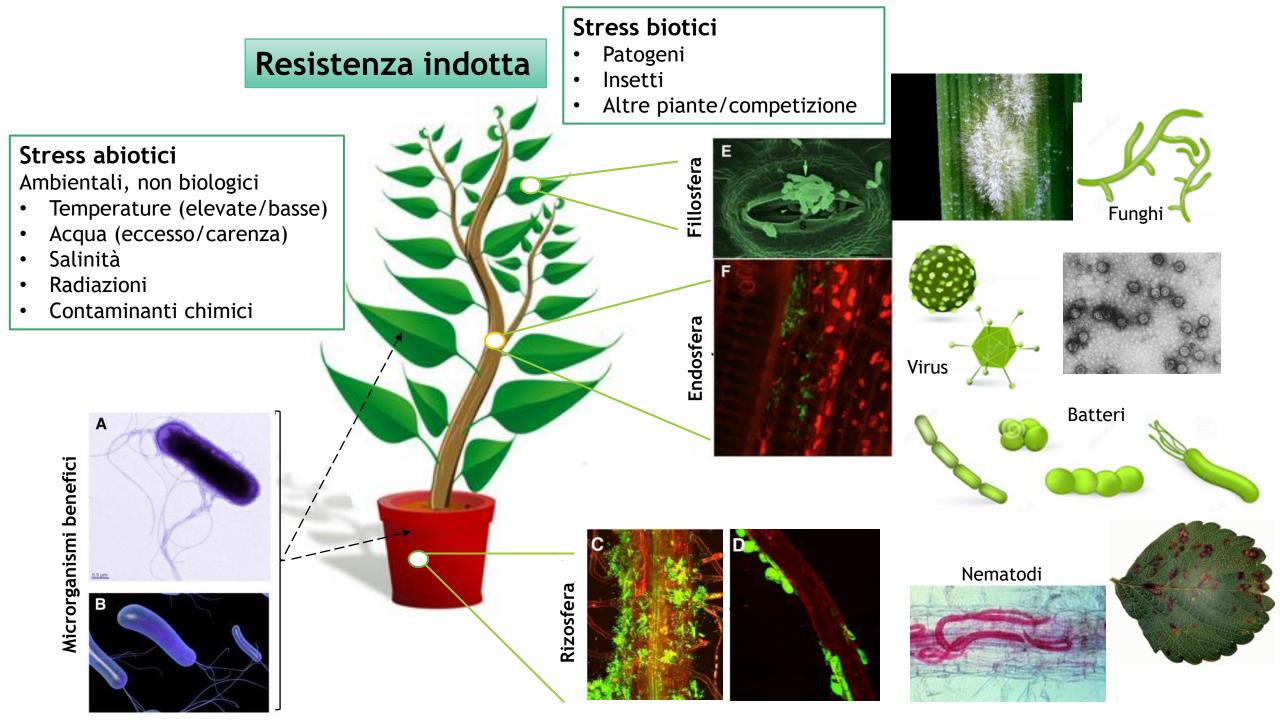
Proteggere l'ambiente e preservare la biodiversità


Garantire un giusto compenso economico nella catena alimentare

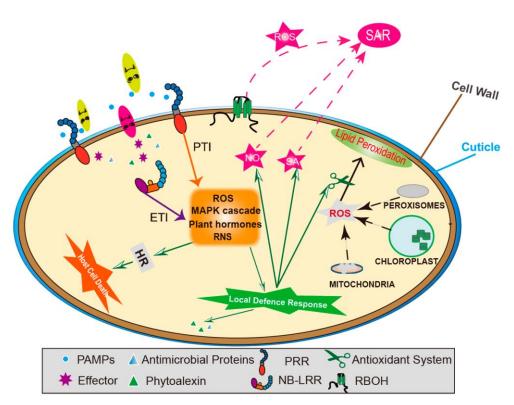
Potenziare l'agricoltura biologica

Induttori di resistenza

- Elicitori o attivatori delle difese naturali della pianta che conferiscono migliorata resistenza a patogeni e altre cause di stress biotico e abiotico
- Assenza di attività antimicrobica diretta
- Le piante trattate sono resistenti ad un'ampia gamma di malattie
- La resistenza può essere indotta da microrganismi non patogeni, sostanze chimiche di sintesi o naturali (estratti di piante, alghe o derivati microbici)

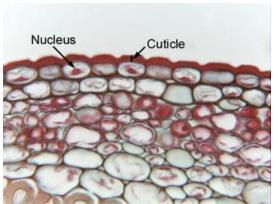

Hartman et al. 2016. https://doi.org/10.1016/B978-1-78242-335-5.00003-2

È possibile combinare gli induttori di resistenza con agenti di biocontrollo e mezzi chimici in programmi IPM

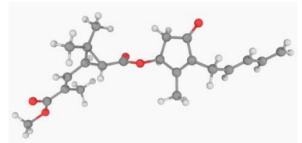

Fattori che possono influenzare l'efficacia della resistenza indotta in campo

- Genotipo dell'ospite
- Stato fisiologico e nutrizionale
- Precedente esposizione ad agenti inducenti
- Fattori ambientali
- Altri mezzi di protezione impiegati
- Tempi, frequenza e modalità dei trattamenti
- Possibile costo metabolico

Le strategie basate sull'impiego di induttori di resistenza devono essere validate e ottimizzate nella pratica agricola

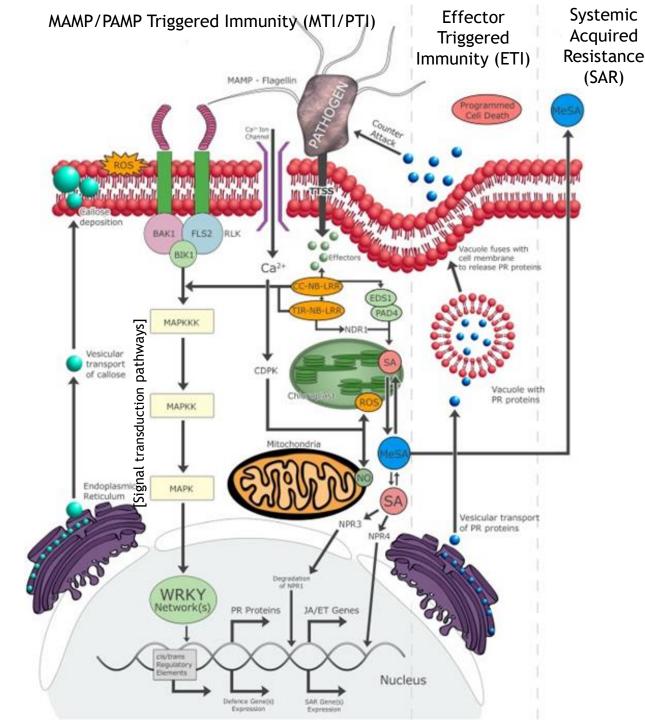


Meccanismi di difesa delle piante



Sun et al. 2020. https://doi.org/10.3390/ijms21020572

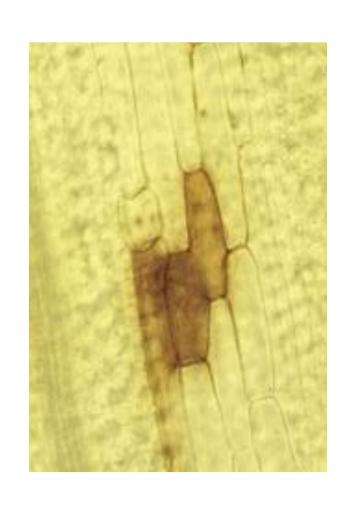
Barriere preformate passive strutturali (es. cuticola)

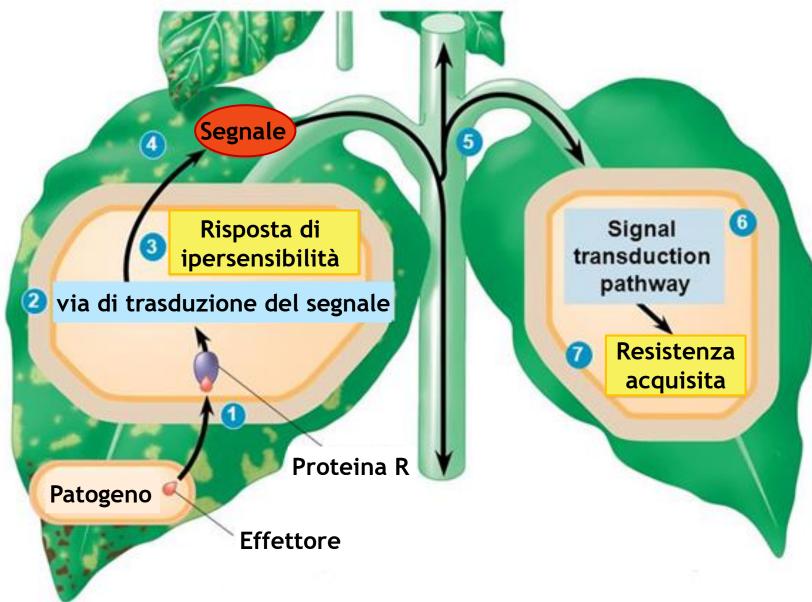

o chimiche/biochimiche (es. piretrine, saponine)

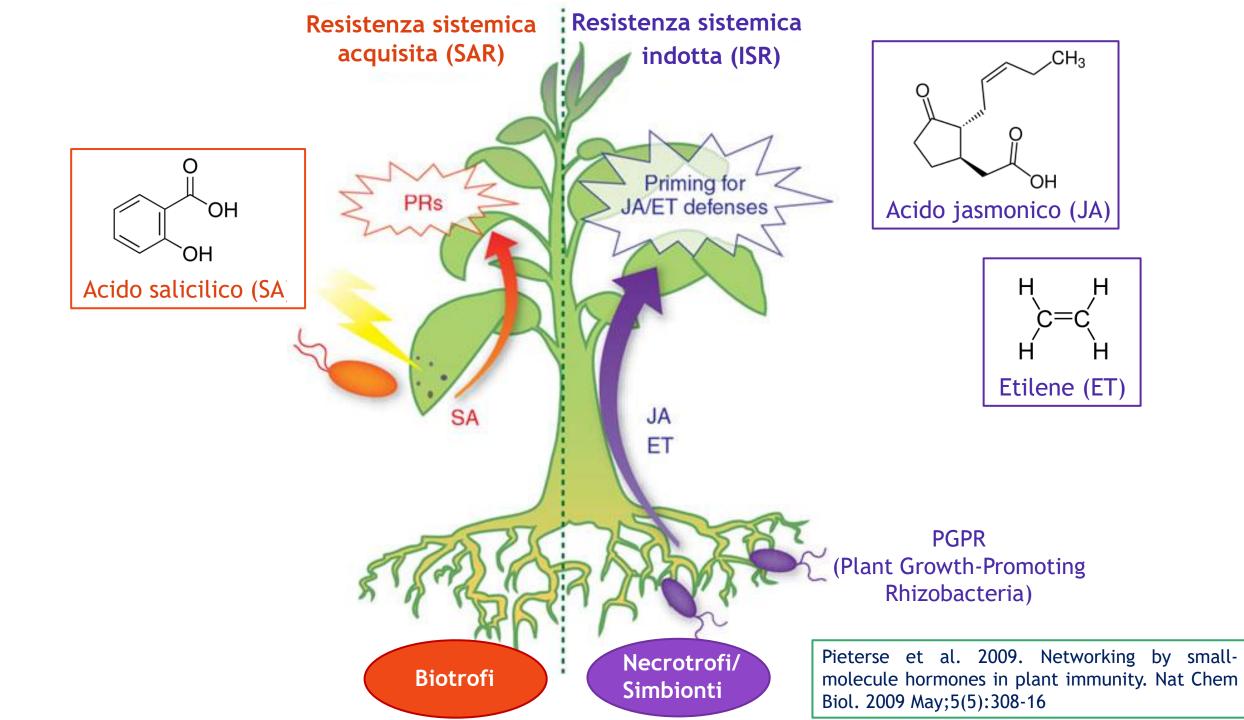
Difese post-infezionali attive

RESISTENZA INDOTTA

'Sistema immune' delle piante


Elicitori:

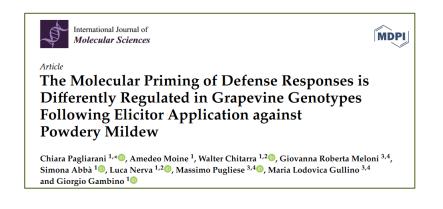

- MAMPs
 (Microbe-Associated Molecular Patterns)
- PAMPs (Pathogen-Associated Molecular Patterns)
- DAMPs
 (Damage-Associated Molecular Patterns)
- Sostanze chimiche naturali o di sintesi

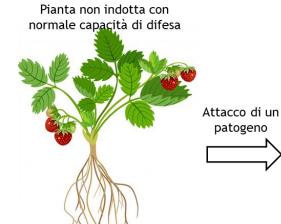

Attivazione dei meccanismi di difesa

- Il riconoscimento degli elicitori attiva sistemi di trasduzione del segnale (proteinchinasi, MAPK) che innescano le risposte di difesa della pianta a livello locale e/o sistemico
- □ Flussi ionici dovuti alla depolarizzazione del plasmalemma (ioni Ca²+)
- Produzione di specie reattive dell'ossigeno (ROS) e di ossido nitrico (NO)
- Modificazioni strutturali e chimici della parete cellulare (deposito callosio, lignificazione)
- Modulazione dell'espressione di geni di difesa (PR, pathogenesis-related) che includono enzimi litici (β-1,3-glucanasi e chitinasi), perossidasi, superossido dismutasi, catalasi, inibitori di proteine, proteine di trasporto dei lipidi (LTP)
- Produzione di metaboliti ad attività antimicrobica (fitoalessine, es. resveratrolo)
- Produzione di fitormoni: acido salicilico (SA), acido jasmonico (JA) ed etilene (ET)

Reazione di ipersensibilità

Priming





Espressione di resistenza indotta (sintomi di malattia ridotti)

Pianta malata

Induttori di resistenza su vite alcuni esempi

Sostanze chimiche di sintesi

	Induttore	Resistenza	Note	Prodotti in commercio	Letteratura
H , N O .H	Acido B- amminobutirrico (BABA)	Peronospora	Riduce la sporulazione	-	Cohen et al. (1999), Reuveni et al. (2001), Hamiduzzaman et al. (2005), Dubreuil-Maurizi et al. (2010)
H. 0	Acido salicilico	Peronospora	Riduce l'incidenza della malattia; fitotossico ad elevate concentrazioni (>2mM)	-	Kast (2000), Elmer e Reglinski (2006), Tamm et al. (2011)
O O S N	Acibenzolar-S- methyl o benzothiadiazole (BTH)	Tumore batterico	Riduce la gravità della malattia	Bion®	Biondi et al. (2009)
Н		Legno nero (fitoplasmosi)	Migliora il 'recovery'		Romanazzi et al. (2013)
0 H	Jasmonati	Oidio	Migliora la tolleranza alla malattia; migliora la qualità di uve e vini	-	Belhadj et al. (2006)

Sostanze naturali

Induttore	Resistenza	Note	Prodotti in commercio	Letteratura
Chitosani	Muffa grigia Peronospora Oidio	Possibilità di utilizzare differenti molecole/oligomeri; specifici recettori cellulari	Armour-Zen®, Chitogel®, Elexa®, Chito Plant®, Kendal- COPS®	Ait Barka et al. (2004), Aziz et al. (2006), Romanazzi et al. (2012, 2014), Feliziani et al. (2013), Dagostin et al. (2011), Iriti et al. (2011), van Aubel et al. (2014)
COS-OGA	Oidio	Chitooligosaccaridi (COS, chitina e chitosano) e oligogalatturonidi (OGA)	<u>lbisco®</u>	van Aubel et al. (2014, 2016)
Laminarina Laminarina	Oidio Peronospora Muffa grigia	Riduce il diametro delle lesioni; effetto sulla chiusura stomatica; derivato solfato (PS3) migliora la risposta	<u>Vacciplant®</u> Frontiere®	Biondi et al. (2009), Aziz et al. (2003), Trouvelot et al. (2008), Allègre et al. (2009), Romanazzi et al. (2014)
Idrolizzati proteici	Peronospora Muffa grigia Oidio	Biostimolanti e induttori di resistenza; possono modificare le popolazioni microbiche della fillosfera	-	Cappelletti et al. (2016), Lachhab et al. (2014, 2016), Nesler et al. (2015)

modificata da Zanzotto e Morroni (2016). https://doi.org/10.1079/9781780647128.0001

Estratti di piante, alghe, microrganismi

Estratto/derivato	Resistenza	Note	Prodotti in commercio	Letteratura
Reynoutria sachalinensis (Poligonacea, giant knotweed)	Oidio Muffa grigia	Riduce la severità della malattia; Induttori di resistenza nel FRAC con codice P5 (estratti di piante)	Milsana® Sakalia®	Elmer and Reglinski (2006), Konstantinidou-Doltsinis et al. (2007), Ortugno et al. (2014)
Solidago canadensis (Asteracea)	Peronospora	Elevati livelli di protezione in viti allevate in vaso	-	Harm et al. (2011)
Ascophyllum nodosum (estratto di alghe)	Peronospora Mal dell'esca	Induttore di resistenza su foglie di viti in vaso	Marvita®	Lizzi et al. (1998), Di Marco (2010)
Estratti di alghe + AlCl ₃	Muffa grigia	Migliora il contenuto di resveratrolo nelle fogkie e l'efficacia di fungicidi	Synermix®	Jeandet et al. (2000)
Penicillium chysogenum (estratto microbico)	Peronospora Oidio	Induttore di resistenza, risultati variabili, può dare fitotossicità	-	Thuerig et al. (2006), Harm et al. (2011)
Saccharomyces cerevisiae (Cerevisane)	Muffa grigia Peronospora Oidio	Induttore delle risposte di difesa in piante di vite	<u>Romeo®</u>	Pujos et al. (2014), De Miccolis Angelini et al. (2019)

Effetti dell'applicazione di induttori di resistenza sulla qualità di uva e vini

Treatment	Matrix	Effect	Reference
Chitosan	Grape	Decreased free amino acid contents	Garde-Cerdán et al. ²²
	Grape	Decreased free and total amino acid contents	Gutiérrez-Gamboa et al. 45
	Grape/wine	Did not have a substantial effect on phenolic composition	Portu et al. ⁴⁶
	Wine	Increased total acetals and alcohols with respect to fungicides with overall acceptance	Vitalini et al. ⁴⁷
Laminarin	Grape	Decreased free amino acid contents	Garde-Cerdán et al. ²²
Methyl jasmonate	Grape	Increased His, Ser, Trp, Phe, Tyr, Asn, Met and Lys contents	Garde-Cerdán <i>et al.</i> ⁴⁸
	Grape	Slightly affected amino acid contents, increased Met content	Gutiérrez-Gamboa et al.45
	Grape	Improved free and total anthocyanin contents	Ju et al. ⁴⁹
	Grape	Improved anthocyanin, flavonol and hydroxycinnamic acid contents	Portu et al. ³⁹
	Grape/wine	Increased anthocyanin content	Portu et al. ⁴⁶
	Grape	Increased stilbene content with inter-annual and inter-varietal differences	Gil-Muñoz et al. ⁴⁸
	Wine	Variety dependence of phenolic content	Gil-Muñoz et al. ⁵⁰
	Grape/wine	Increased anthocyanin and stilbene contents	Portu et al.51
	Grape	Increased phenolics and seed and skin tannins in response to clone use	Ruiz-García et al ⁵²
	Grape	Increased concentrations of some terpenes and C ₁₃ -norisoprenoids	Gómez-Plaza et al.53
	Wine	Improved contents of fermentative volatile compounds	Gómez-Plaza et al.53
	Grape	Fatty-acid contents decreased	Ju et al. ⁴⁹
	Grape	1-Hexanol, hexanal and 2-heptanol contents increased significantly	Ju <i>et al.</i> ⁴⁹
	Grape	Decreased individual amino acid contents, with inter-varietal responses	Gutiérrez-Gamboa et al.54
	Grape	Effects dependent on vintage in a study over three seasons	Garde-Cerdán et al.55
Yeast extracts	Grape	Decreased free and total amino acid contents	Gutiérrez-Gamboa et al.45
	Grape/wine	Increased anthocyanin content and grape stilbene concentrations	Portu et al.46
	Grape	Increased stilbene contents with inter-annual and inter-varietal differences	Gil-Muñoz et al. ⁴⁸
	Grape	Decreased individual amino-acid contents, with inter-varietal responses	Gutiérrez-Gamboa et al.54
Abscisic acid	Grape	Improved free and total anthocyanin contents	Ju <i>et al.</i> ⁴⁹
	Grape	Linoleic acid concentration gradually increased	Ju <i>et al.</i> ⁴⁹
	Grape	1-Hexanol, hexanal and 2-heptanol contents increased significantly	Ju <i>et al.</i> ⁴⁹
Phenylalanine	Grape	Improved flavonol content	Portu et al.39
+methyl jasmonate	Grape	Did not affect amino acid contents compared to control	Gutiérrez-Gamboa et al. 56
Benzothiadiazole	Wine	Variety dependence in phenolic content	Gil-Muñoz et al. ⁵⁰
	Grape	Increased phenolics and seed and skin tannins in response to clone use	Ruiz-García et al.52
	Grape	Increased concentrations of some terpenes and C ₁₃ -norisoprenoids	Gómez-Plaza et al.53
	Wine	Improved contents of some fermentative volatile compounds	Gómez-Plaza et al.53
	Wine	Increased total acetals and esters compared to fungicides	Vitalini et al. ⁴⁷
Riboflavin	Grape	Increased contents of several amino acids	González-Santamaría et al. ⁵⁷
Benzothiadiazole	Wine	Did not affect higher alcohol and ester concentrations	Ruiz-García et al. ⁵⁸
+methyl jasmonate	Wine	Improved terpene contents, with sensory differentiation	Ruiz-García et al. ⁵⁸

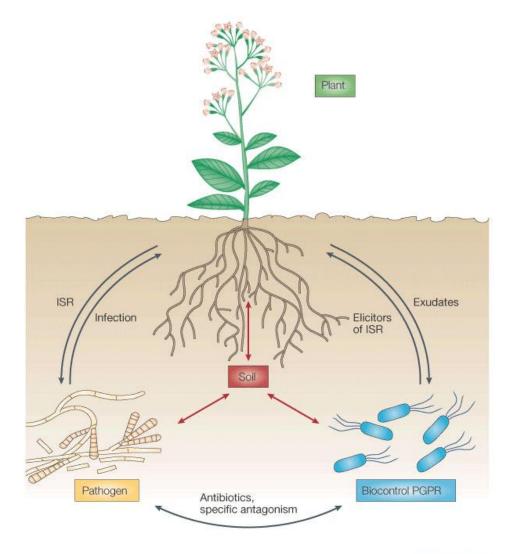
Review

Received: 4 May 2018

Accepted article published: 10 September 2018

Published online in Wiley Online Library: 26 October 2018

(wileyonlinelibrary.com) DOI 10.1002/jsfa.9353

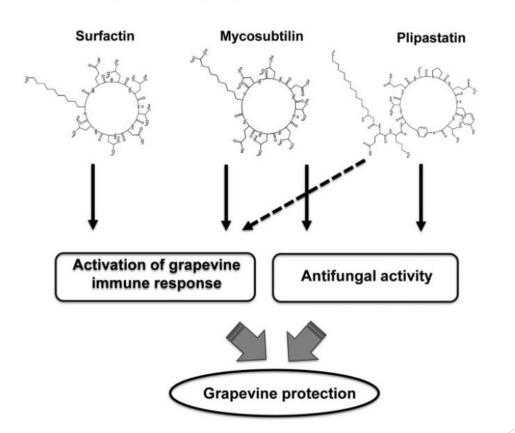

A review of the use of biostimulants in the vineyard for improved grape and wine quality: effects on prevention of grapevine diseases

Gastón Gutiérrez-Gamboa, a Gianfranco Romanazzi, b* 0 Teresa Garde-Cerdánao and Eva P Pérez-Álvareza*o

Induttori di resistenza di origine naturale Microrganismi

- Rizobatteri promotori di crescita,
 PGPR (Bacillus, Pseudomonas,
 Strptomyces, Enterobacter e
 Burkolderia)
- Funghi promotori di crescita,
 PGPF (Trichoderma, Penicillium,
 Fusarium, e Heteroconium)
- Funghi micorrizici arbuscolari,
 AMF (Glomus, Funneliformis e Rhizophagus)

Nature Reviews | Microbiology


Haas et al. (2005). https://doi.org/10.1038/nrmicro1129

Ramnolipidi, lipopolisaccaridi e lipopetidi

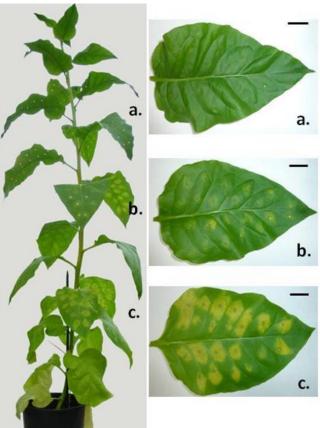
Lipopeptidi prodotti da Bacillus subtilis (sufactina, iturina, fengicina)

Cyclic lipopeptides from *Bacillus subtilis* activate distinct patterns of defence responses in grapevine

Effect of compost water extracts on grey mould (*Botrytis cinerea*)

Y. Elad* and D. Shtienberg

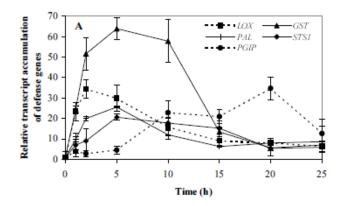
Department of Plant Pathology, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel

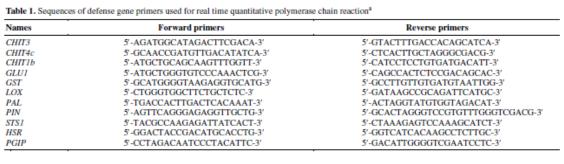

Water extracts of fermented mature composts prepared from animal sources (cattle manure and chickencattle manure) and a plant source (grape marc) were tested in growth chamber experiments for their ability to control leaf grey mould on tomato and pepper plants and grey mould on grape berries. Disease was reduced by 56–100% by extracts after a fermentation that lasted more than 10 days. In some cases, even a shorter fermentation time was sufficient. Addition of nutrients to the fermenting mass did not generally improve disease control. Pasteurization of the extracts nullified their efficacy in part and only in some cases. Two bacterial strains isolated from the extracts controlled grey mould effectively. Dilution of the extracts (25-fold) resulted in retention of their efficacy only when they were prepared from grape mare compost. In an experiment conducted under commercial greenhouse conditions, extract of cattle manure compost reduced tomato leaf grey mould significantly (p < 0.05) compared with the water control, but superior disease suppression was achieved with the fungicide vinclozolin. In another experiment, involving a heavy natural powdery mildew (*Leveillula taurica*) infestation on tomato leaves, partial control of the disease was obtained by all extracts tested.

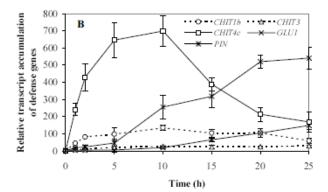
Keywords: biocontrol; Botrytis cinerea; fermented compost water extract; fungicide; Leveillula taurica

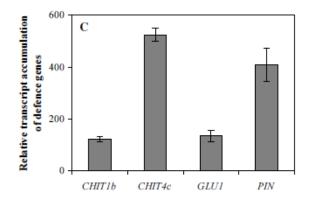
Grape marc extract acts as elicitor of plant defence responses

Pascale Goupil · Razik Benouaret · Olivia Charrier · Alexandra ter Halle · Claire Richard · Boris Eyheraguibel · Denis Thiery · Gérard Ledoigt






Compost


Studio degli effetti degli induttori di resistenza nelle piante

qPCR per analisi dell'espressione genica

MPMI Vol. 16, No. 12, 2003, pp. 1118–1128. Publication no. M-2003-0915-01R. © 2003 The American Phytopathological Society

Laminarin Elicits Defense Responses in Grapevine and Induces Protection Against *Botrytis cinerea* and *Plasmopara viticola*

Aziz Aziz,¹ Benoît Poinssot,² Xavier Daire,² Marielle Adrian^{2,3}, Annie Bézier,¹ B. Lambert,¹ Jean-Marie Joubert,⁴ and Alain Pugin²

Profili di espressione su scala genomica

L'approccio su larga scala dell'espressione genica può essere cruciale per comprendere gli effetti degli elicitori sul metabolismo della pianta ed i meccanismi attivati da specifici induttori di resistenza

Metodiche:

- Suppression Subtractive Hybridization (SSH)
- Sequenziamento di Expressed Sequence Tags (ESTs)
- Serial Analysis of Gene Expression (SAGE)
- Microarrays
- RNA-Sequencing (RNA-Seq)

Received: 5 September 201

Revised: 21 December 20

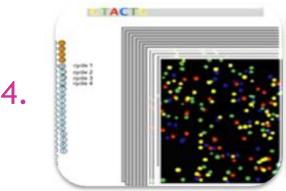
Accepted article published: 4 January 20

Published online in Wiley Online Library: 10 February 2019

(wileyonlinelibrary.com) DOI 10.1002/ps.5317

Global transcriptome analysis and differentially expressed genes in grapevine after application of the yeast-derived defense inducer cerevisane

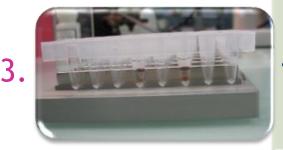
Rita M De Miccolis Angelini, *© Caterina Rotolo, ® Donato Gerin, © Domenico Abate, Stefania Pollastro © and Francesco Faretra ©



Resistenza indotta da Cerevisane® in vite

Esperimento RNA-Seq

- Raccolta dei campioni:
- A ciascun tempo da piante trattate e non trattate
- N. 5 foglie/frutti per pianta

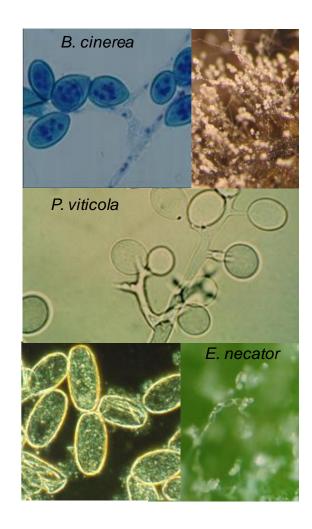

- Sequenziamento NGS (Illumina, Single Reads, 50-150 cicli)
- Analisi bioinformatica dei dati

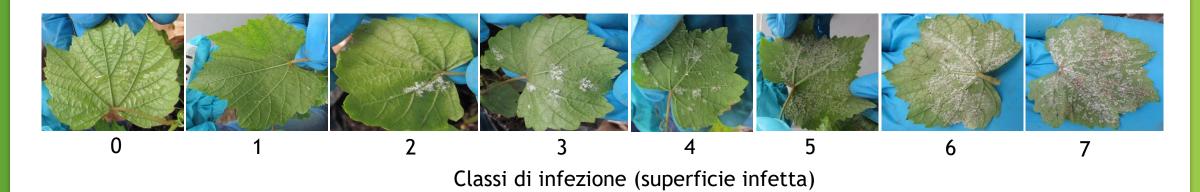

• Estrazione di RNA totale

 Analisi di espressione genica differenziale

 Preparazione di librerie di cDNA

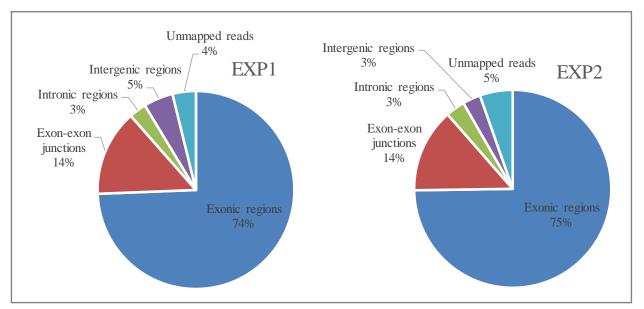
Analisi funzionale

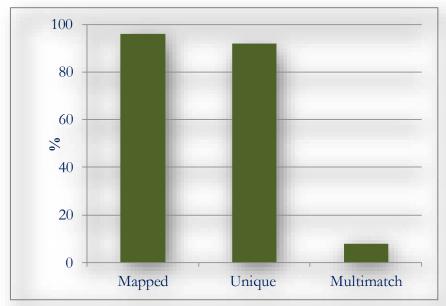

Metodi: biosaggio di induzione di resistenza


- ❖ Piante di vite (Vitis vinifera, cv Italia) allevate in condizioni controllate di serra sono state trattate con Cerevisane® o acqua (controllo non trattato) [No. 3 trattamenti con intervalli di 7 giorni].
- Inoculazioni con patogeni fungini 24 h dopo il terzo o il secondo trattamento.

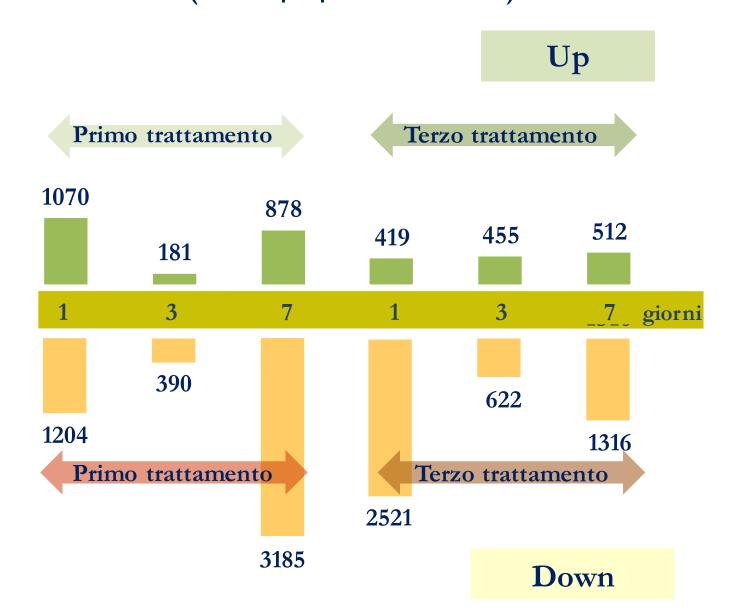
Campioni di foglie sono state raccolte a 1, 3 e 7 giorni dopo il primo e il terzo trattamento. Per ciascun tempo di campionamento e trattamento, tre campioni di foglie replicate sono state raccolte sia dalle piante trattate che dalle piante controllo.

Plasmopara viticola

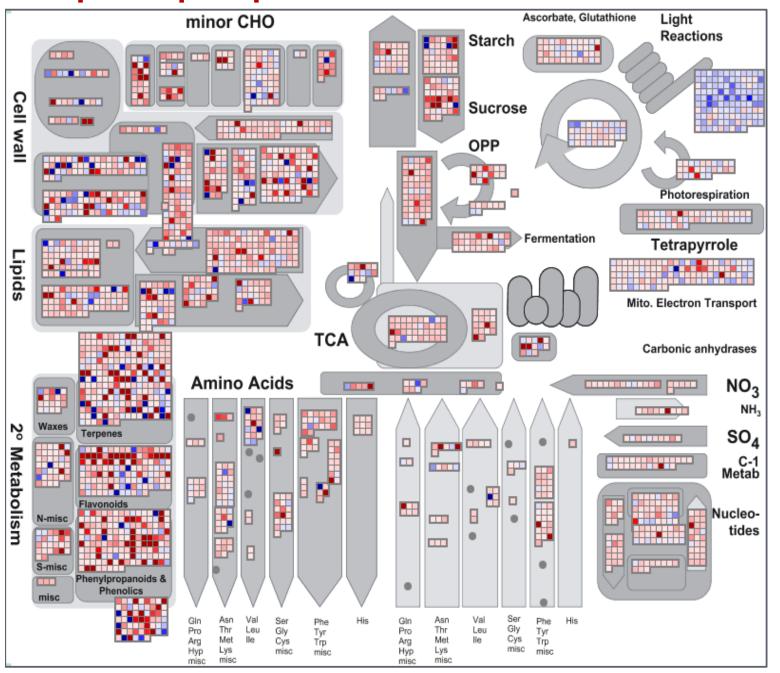

Diffusione e gravità della malattia


Trattamento	Diffusione(%) 7 DAI	MKI (%) 7 DAI	Diffusione(%) 11 DAI	MKI (%) 11 DAI
Controllo non trattato	23.3 a	10.7 a	38.5 a	14.9 a
Cerevisane	3.7 b	0.8 b	9.4 b	2.6 b

Dati seguiti dalle stesse lettere non sono statisticamente differenti in accordo al test multiplo di Duncan a livelli di probabilità P=0.05


Risultati: dati RNA-Seq e allineamento su genoma di vite

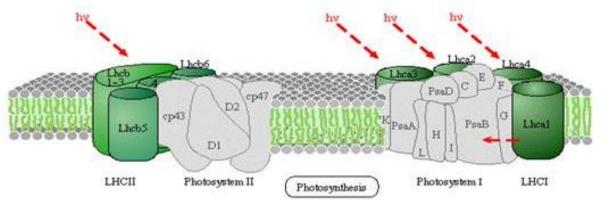
Sequenze totali (<i>Reads</i>)	344 M (17.2 Gb)
Reads per campione	27-30 M
Coverage	≥ 12x
Geni	31,845
Transcritti	55,564



Geni differenzialmente espressi (DEGs) (FC ≥ |2| FDR≤0.05)

Mappe dei principali processi metabolici della vite (MapMan)

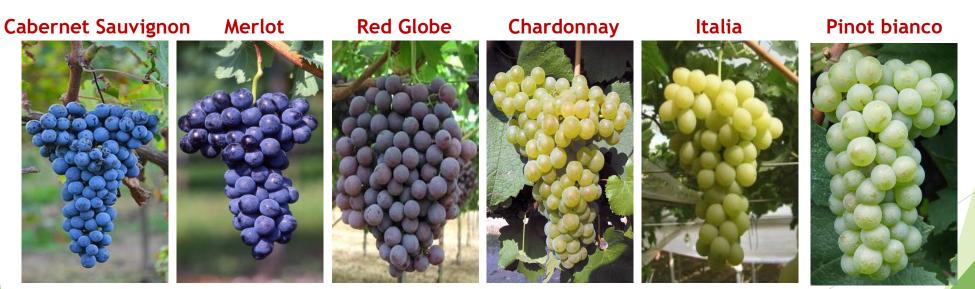
- 2 - 3



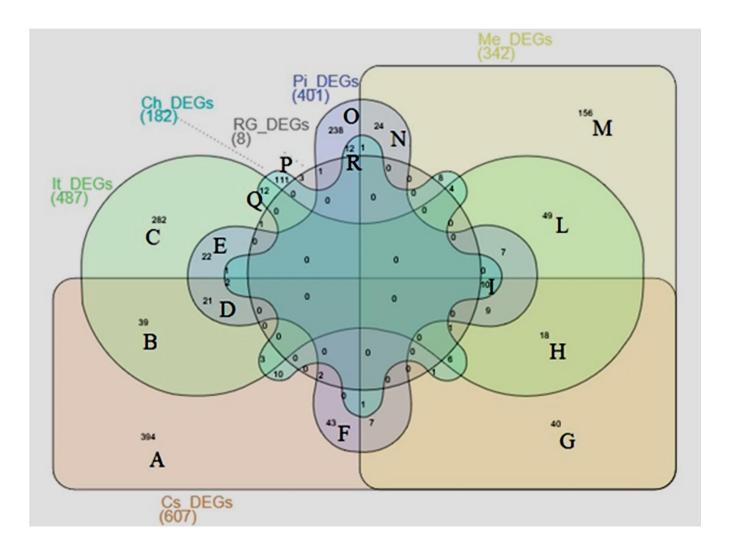
COUR	-	First treatment (days)			Third tratment (days)		
GO-ID	Term		3	7	1	3	7
GO:0080142	regulation of salicylic acid biosynthetic process	6.37E-08					
GO:0010112	regulation of systemic acquired resistance	1.25E-04					
GO:0009862	systemic acquired resistance, salicylic acid mediated signaling pathway	1.60E-03					
GO:0009867	jasmonic acid mediated signaling pathway	1.82E-02					
GO:0050832	defense response to fungus	3.38E-09				3.81E-02	
GO:0042742	defense response to bacterium	4.28E-04					
50:0002237	response to molecule of bacterial origin	3.03E-04					
GO:0050691	regulation of defense response to virus by host	2.51E-02					
GO:0080027	response to herbivore	2.41E-05					
60:0009611	response to wounding	1.11E-03					
GO:0001666	response to hypoxia	4.83E-06					
GO:0080040	positive regulation of cellular response to phosphate starvation	1.85E-02					
GO:0031640	killing of cells of other organism	4.07E-02					
GO:0009581	detection of external stimulus	4.45E-02					
GO:0000165	MAPK cascade	1.41E-02					
GO:0000186	activation of MAPKK activity			3.01E-06			
GO:0007178	transmembrane receptor protein serine/threonine kinase signaling pathway			2.59E-05			
GO:0009814	defense response, incompatible interaction			4.35E-02			
GO:0009723	response to ethylene					6.91E-03	
GO:0000302	response to reactive oxygen species					9.19E-03	
GO:0034051	negative regulation of plant-type hypersensitive response					3.80E-02	
GO:0010200	response to chitin			9.48E-03			
GO:0080167	response to karrikin			2.83E-03			
GO:0046688	response to copper ion						2.35E-02
GO:0010117	photoprotection			1.42E-02			
GO:0071485	cellular response to absence of light	3.71E-02			8.72E-03		
GO:0010310	regulation of hydrogen peroxide metabolic process	5.96E-04					
50:0009992	cellular water homeostasis	2.08E-04					

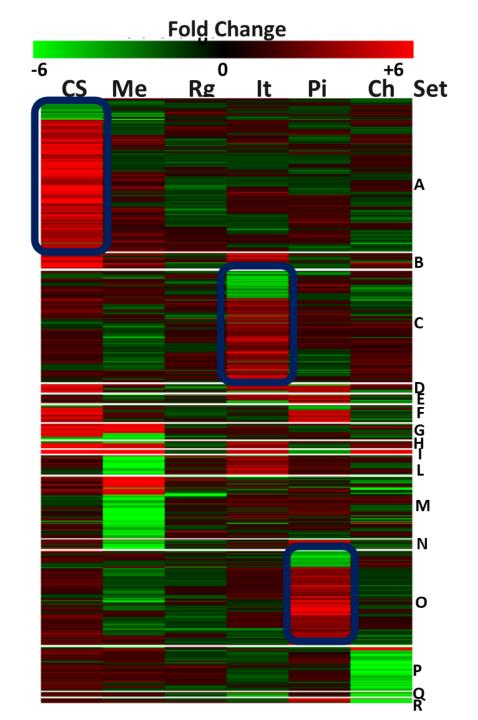
Chlorophyll A/B (CAB)-binding proteins

Light-harvesting chlorophyll protein complex



Geni che codificano 'CAB-binding proteins' sono indotti in modo specifico in **genotipi di vite** resistenti a peronospora


Genotipo dell'ospite



Valutare l'efficacia di cerevisane nei confronti di *Plasmopara viticola* ed i cambiamenti trascrizionali in diverse cultivar di *Vitis vinifera*

Profili di espressione dei geni nelle varietà

Conclusioni

- L'uso degli induttori di resistenza è una strategia innovativa che elicita il naturale sistema di difesa della piante e protegge le colture dalle malattie
- Lo studio dei meccanismi indotti dagli elicitori su colture di interesse può consentire applicazioni concrete dell'induzione di resistenza nelle piante in programmi di protezione integrata sempre più sostenibili
- Le metodiche di analisi più innovative possono essere di ausilio per queste indagini